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LIQUID CRYSTALS, 1989, VOL. 5, No. 3, 969-986 

Order parameters from U.V. spectra with incompletely polarized 
absorption bands 

by H.-G. KUBALL, R. MEMMER, A. STRAUSS and M. JUNGE 
Fachbereich Chemie, Universitat Kaiserslautern, D-6750 Kaiserslautern, 

F.R. Germany 

G. SCHEROWSKY 
Institut fur Organische Chemie, Technische Universitat Berlin, D- 1000 Berlin 12, 

F.R. Germany 

and A. SCHONHOFER 
Technische Universitat Berlin, D-1000 Berlin 12, F.R. Germany 

A new method is developed for the determination of Saupe’s order parameters 
S* and D* from I.R. or U.V. spectra and the temperature dependence of their 
degree of anisotropy R. This method can be applied to molecules with one uni- 
formly polarized band and another band of mixed polarization if all bands con- 
cerned are polarized in the same plane. For that a relation D* = f ( S * )  between 
the order parameters as a function of temperature is necessary, which can be 
obtained from the lines of constant entropy in the order triangle. These isentropics 
are calculated from the orientational distribution function of the ordered system. 
The resulting function D* = f ( S * )  is equal to that of the mean field theory given 
by Luckhurst et al., but can be derived here in a very easy way. The method is 
applied to diaminoanthraquinones with a point symmetry C,, . 

1. Introduction 
The I.P.. or U.V. spectra of ordered uniaxial systems and their degree of aniso- 

tropy R can be described quantitatively by molecular spectroscopic parameters, i.e. the 
transition moment tensor E,  and the two Saupe order parameters S* and D* [l,  21. 
If the spectroscopic quantities E~~ are known, then S* and D* can be determined from 
the degree of anisotropy of the anisotropic solution in the case where there are suf- 
ficient bands of different polarization. Generally, however, Eij is not known in advance 
and must thus be determined from the same experiment. This determination of S* and 
D* is questionable except when there are sufficient purely polarized absorption bands 
of diflerent polarization. However, in the U.V. absorption region purely polarized 
bands are rare, i.e. overlapping bands with different transition moment directions are 
the rule. Here further information is needed to determine S* and D*, especially an 
estimation of the amount of overlapping of the bands. Neglect of this overlap leads 
to a D* (sometimes also S*, depending on the type of spectra) which is faulty [2] .  

For liquid crystal guest-host systems Clark and Saunders [3] and Korte [4] were 
among the first who tried to handle this problem. For molecules dissolved in polymer 
sheets, for example, it has been solved by means of a special approximation developed 
by Thulstrup, Eggers and Michl (T.E.M. model) [5 ]  in order to decompose U.V. 
spectra into components of different transition moment directions ( E ~ ~ ;  = 1, 2, 3). 
Last year Strauss and Kuball presented [6] in part a new method for the determination 
of S* and D* from the temperature dependence of the degree of anisotropy R(i,  T )  
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970 H.-G. Kuball et al. 

measured in two different wavenumber regions I;, and i2 of the spectrum. For this 
method a relation R ( i 2 ,  T )  = 4(R(I; , ,  T ) )  was derived in which the function 
D* = f ( S * )  from the mean field theory developed by Luckhurst and co-workers [7] 
was used. This method is applicable to molecules with a point symmetry group 
different from CI,  C2, Ci, C,  and CZh possessing a spectral region ( i ,)  with only one 
purely polarized absorption band and a second region (Q which has a mixed 
polarization. Furthermore, all bands concerned have to be polarized in the same 
plane. As an example of application, diaminoanthraquinones were analysed. 

In this paper the method is developed further. In particular, the loan from the 
mean field theory is substituted by a determination of the function D* = f(S*) from 
the curves of constant entropy in the order triangle. The procedure is applied to 
evaluate the order parameters S* and D* of diaminoanthraquinones of symmetry C2” 
where the orientation axis is fixed by symmetry, 

2. Theoretical background 
The degree of anisotropy, available from the anisotropic absorption of light, is 

defined by 

R = (el - E ~ ) I ~ E , ~ ~ ~  (1) 
where E ,  and e2 are the molar decadic absorption coefficients for light polarized 
parallel and perpendicular to the optical axis of a uniaxial system, respectively, and 
E,,, = $ ( E ,  + 2 ~ ~ )  is the absorption coefficient of the isotropic state. The Saupe 
order parameters S and D depend on the molecule-fixed coordinate system chosen. 
Two different coordinate systems (x: and x,*) have a distinct significance in con- 
necting the order parameters with the absorption coefficients and the degree of 
anisotropy. The coordinates x: refer to the principal axes of the transition moment 
tensor cfJ and the x,* to those of the orientational distribution tensor g,,,. The 
order parameters are then indicated as S + ,  D+  and S*, D*, respectively. Whereas, 
in general, the quantities E~ (p  = 1, 2) as well as R depend on non-diagonal elements 
of E ,  and g,J33, in the description with x;‘ or xp only diagonal elements enter eB as well 
as R because tfJ or gfJ33 is diagonal. Therefore, the degree of anisotropy can be 
expressed as 

where 

where 
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Order parameters from mixed polarized U.  V .  bands 97 1 

f 
D 

Figure 1. Order triangle. The hatched area is sufficient to describe the order of a uniaxial 
system (S, D) -+ (S*, D*). The five remaining triangles bear the same information but 
belong to the principal axes of the orientational distribution tensor with a changed 
numbering. The straight lines I-IV characterize special relations between S* and D*: 
I, D* = 3-1’2(1 - S*); 11, D* = 31’23*; 111, D* = 0; IV, D* = 3-”2S*. 

f # (p, y )  is the orientational distribution function for a uniaxial system with the opti- 
cal axis parallel to the space-fixed x; axis. The a,  are the elements of the orthogonal 
transformation matrix from the space-fixed (xl’) to the molecule-fixed (x,# ) coordinate 
system. The convention for the numbering of the eigenvalues of g,,, , g,*,,, 2 &33 > 
gT,33 has the consequence S* 2 S for a given orientational distribution and an 
arbitrary molecule-fixed coordinate system. The ‘orientation axis’ is defined as the x: 
axis. Except for the molecules with a point symmetry group C ,  , C2, C , ,  C ,  or C2h, the 
axes of the (x : )  and the (x:) systems coincide. The orientation axis is fixed by 
symmetry and the above convention for numbering the eigenvalues of g,,),.  The 
numbering of the x,! with respect to the x: is arbitrary. Figure 1 shows the ‘order 
triangle’ referring to parameters S and D. The hatched region (S*,  D*) is sufficient to 
describe the order of a uniaxial system, i.e. every possible function f *(p, y) has an 
image point in this region. 

3. Working equations 
3.1. The basic relation 

For the analysis we restrict ourselves to systems where the axes of the ( x : )  and 
the ( x t )  coordinate system coincide by symmetry. Furthermore, we assume all 
absorption bands concerned to be polarized in the same plane (the plane of a molecule 
with a n-system, for example) and, moreover, that there is one absorption region (5,) 
with a purely polarized band and another (C2) where bands of different polarization 
directions overlap (mixed polarization). The degree of anisotropy of the first region 
can then, as a function of temperature, be compared with that of the second region. 
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972 H.-G. Kuball et al. 

From equations (2), 

and a function D* = f(S*), derived in 93.5,  there follows the relation 

R(i,, T )  = O ( R ( i , ,  T)) .  (6)  

R(i2, T )  = A ( & ) R ( i I ,  T )  + B(iZ)D*(T).  (7) 

The elimination of S* from equations (5) yields 

The coefficients A( i , )  and B ( i 2 )  depend on the qtfi(i2). The plane of R(S,, T )  and 
R(i,,  T )  as Cartesian coordinates will be used in the later discussion. There are six 
different pairs of coefficients, as listed in table 1. This results from the different 
possibilities of placing the principal axes x: of g;,33 relative to the molecular geometry 
as shown in figure 2. 

x; I 

I l l1 * , * a  1.11 

R IF2 ,  T J 

ic,. 1 I 

. * 1 ,  lv.v.nl.nll 

12b1 . ? * a  1.11.111 

Figure 2. Assignment of the coordinates of the transition moment tensor E: to the x: 
coordinate system with g?,,, > g&,, 2 gT,33. 
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Order parameters from mixed polarized U. V. bands 973 

Table 1 .  The coefficients A(F2) and B(5,) of equation (7). 

q& for the transition 

Molecular Purely 
No. plane polarized? Mixed polarized$ 4 5 2 )  B(t2) 

ti$ = wavenumber of the purely polarized transition. 
$ V2 = wavenumber in the region of mixed polarization; the first column gives the main 

contribution in this spectral region. 

3.2. Relating the transition moment directions to the xi* axes by the R ( i l ) ,  
R( i2)  plane 

In order to simplify the simulation of the function R(f, ,  T )  = @(R(i l ,  T ) ) ,  as 
described later, it is possible to restrict the number of cases, given in table 1 ,  by a 
purely qualitative procedure. The function R(i2 ,  T )  = @ ( R ( i l ,  T ) )  is confined to 
certain regions in the R(Tl), R(i,) plane for the different cases because of the following 
restrictions on the q&, S* and D* values 

0 < $8 < 1, 0 < s* < 1, (8 4 

(8 b) 1 0 < D* ,< 3'I2S*, for 0 < S* < $; 
0 < D* < 3-Il2(1 - S*), f o r t  < S* < 1. 

Some of the six situations of table 1 are compatible with several regions of figure 2. 
However, in these cases the sign of the curvature of R(i2,  T )  = @ ( R ( i l ,  T ) )  allows 
a further differentiation as will be discussed in 43.3. 

In order to get a good understanding of figure 2 one has to go into further details. 
We will therefore inspect the areas IV and VII resulting from equation (7) and the 
coefficients of the situation 3 b in table 1 and figure 2. Since BD* 2 0, the lower 
bound (Ib) of R(i,, T )  is given here by 

In order to calculate the upper bound of R(i2,  T ) ,  the faces of the order triangle 
(figure 1) 

D* = 3II2S* = 3'I2R(5,, T ) ,  for 0 < S* < ( 1 0 4  

and 

D* = 3-",(1 - S*) = 3-'12[1 - &(GI, T)] ,  f o r t  < S* < 1 ( lob)  

have to be used. Insertion of equations (10) into equation (7) yields, for the upper 
bound (ub), 

[R(i2, T)lub = R(i1, T ) ,  for 0 ,< s* = R( i l ,  T )  ,< ( 1 1  a)  
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cb 
m 
0 

I 

4 

0 
I 

q;t(E) = 0 . 0  

q;#) = 0 . 1  

q;*(f i )  = 0 . 4  

Figure 3. Constructing scheme for the areas IV and VII. The hatched areas represent possible 
regions of the curve given by equation (6 )  for special q$(5,) values as given at the right 
ordinate. For the experimental point A an upper and lower bound of D* can be estimated 
by the upper face of the triangle corresponding to q!2(i2) = 0.7 and the lower face of the 
triangle corresponding to qf2(5,) = 0.4. 

and 

[ R ( i 2 ,  T)]",, = [I - 2q,*,(i2)]R(?,, T )  + +qT2(i2), for a 6 S* = R ( i l ,  T )  < 1. 
(11 b) 

Equations (9) and (1 1) describe straight lines which enclose a triangle shown in 
figure 3 for the values q&(i2)  = 0.1,0-4,0.7 and 1. For given qT2(i2) value, all points 
satisfying R ( i 2 ,  T) = (D(R(i,, T)) lie within this triangle which is covered when S* 
and D* in equations ( 5 )  vary over the hatched region in figure 1. In the case of 
qF2(i2) = $ the triangle corresponds to the order triangle if the ordinate is multiplied 
by the factor 3'l2[R(S,, T) = S*, R ( i 2 ,  T) = 3-1/20*]. The additional variation of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
0
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Order parameters from mixed polarized U.  V .  bands 975 

q?z(ijz) yields the areas IV and VII. If q2*2((v2) approaches zero, then the triangle 
degenerates into a line. The determination of the D* value from experiment then 
becomes impossible. This can easily be understood from the special spectroscopic 
situation of this case, since for q2*2(ij2) = 0 the transitions used (iI, i iz)  are polarized 
parallel to each other, i.e. the molecule appears as a line to the interacting light wave. 
It is interesting to remark that for D* = 0 the experiment must yield a straight line 
and vice versa, i.e. if the R(ij2, T ) ,  R(ijl ,  T)-dependence has the form of a straight line, 
one can conclude D* = 0 unequivocally except for q&(ij2) = 0, which means that 
B(ij,) = 0. 

3 .3 .  Differentiation by the sign of curvature of R(ijz, T )  = @(R(ijl ,  T)) 
For D* = 0, equation (7) yields a straight line. Because D* 2 0 and q& 2 0, 

the term BD* is positive for the situations 1 a, 2 b and 3 b and negative for I b, 
2 a  and 3a. Therefore, BD* is added to the ordinate values of the straight line 
in the first three cases, and thus the values of R(ijz, T )  are above R(ij2, T)  = 

A&) R(C,, T ) ,  whereas for 1 b, 2 a  and 3 a they are below this line. For S* + 0 
or S* -+ 1 they converge to this line again, because then D* + 0. The curve 
given by equation (6)  is convex from above for the situation 3 b and concave from 
above for 3 a. The other situations are more complicated than 3 a and 3 b because 
for l a ,  b and 2a,  b )3’”[&((v1) - qE(ijl)] # 0 and thus R(i$, T ) ,  according to 
equation ( 5 4 ,  contains not only S* but also D*. This will be discussed in a sub- 
sequent paper in the context of further experimental results. For situations 3 a and 3 b 
the largest difference between the values of R(ij,, T )  and the straight line should, 
according to equation (7), be near the maximum of the D* = f ( S * )  curve, i.e. at 
about S* = R(ijl, T) x 0.4. With D* = f(S*), as shown later in figure 8, the 
R(?, , T), R(GI, T)-dependence yields numerical results for the situations 2 b and 3 b 
as shown in figures 4 and 5 .  The assignment of the situations corresponding to the 
areas I-VIII to a special experimental case, i.e. the transition moment tensor and by 
this of the x: axes to the molecular framework, can be derived from table 2 together 
with figure 2. 

The assignment is unequivocal if the temperature dependence of R(i ,  T)  is 
strong, i.e. if the curve R(ij2, T )  = @(R(ijl, T)) extends over a large range in 
the R(ij,), R(&) plane and if it is not a straight line. If D* is very small, and thus 
the curve is nearly a straight line, then the assignment is uncertain. To overcome 
this problem, one may choose another wavenumber region for measuring R(i$, T )  
because the curvature of the curves is changed by changing the q&(ij2). 

Table 2. Assignment of the situations 1 a-3 b to the coordinates of the transition moment 
tensor by the type of curves and their position in the different areas of figure 2. 

Situation 

Curve l a  l b  2 a  2 b  3 a  3 b  

Below the straight I ,  I1 IV, v ,  VI IV, VI 
line (D* = 0) VII, 

Above the straight I1 I, 11, I11 IV, VII 
VIII 

line (D* = 0) 
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976 H.-G. Kuball et al. 

~ b / a  = 1 . 5 0  

= 1 . 2 2  
= 0 . 9 1 ,  

= 0 . 6 6  
= 0 . 3 8  

- 0 . 4  - 0 . 2  0 . o  0 . 2  

R W,, T 1 
Figure 4. Simulation of the R&, T ) ,  It(;,, T)-dependence for the situation 2b.  

3.4. Confinement of the D* values by approximated q$2(i2) values for  the situation 
3 b as an example 

An experimentally obtained point in the R(i , ) ,  R ( i 2 )  plane, as indicated by the A 
in figure 3, belongs to infinitely many triangles determined by different q2:(ij2) values 
(right ordinate). However, there are two special triangles where the point lies on the 
upper or lower face, respectively. From these a lower bound [qT2(C2)Ilb and an upper 
bound [qT2(C2)lub can be determined by which the interval of the D* values resulting 
from the order triangle (see equations 8) can be restricted. This restriction can be used 
to check the I>* values calculated by the method given in $3.6. 

3.5.  Isentropics in the order triangle and the relation D* = f (S*)  
Every point in the order triangle (figure 1)  is an image point of orientational 

distribution functions and thus represents some kind of order. If higher order par- 
ameters are neglected, the order of a system is completely described by S* and D*. 
When comparing different states of one or several molecular systems, e.g. liquid 
crystal guest-host systems, the question of whether a large S* and a small D* or 
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Order parameters from mixed polarized U. V. bands 977 

N 

0 4  

b/a  = 1 06 

0 

0 

N 

0 
I 

0.0 0 . 2  0 . 4  0.6 0 . 8  1.0 

Figure 5. Simulation of the R(iiZ, T ) ,  It(;, , T)-dependence for the situation 3 b. 

vice versa represents the state of higher order arises. In other words, a measure of 
order is necessary in which both quantities are taken into account. As is known well 
from statistical thermodynamics, this measure is provided by the entropy. For the 
present as well as other purposes it is useful to calculate the lines of constant entropy 
(isentropics) Y ( S * ,  D*) = constant in the order triangle. (In order to avoid con- 
fusion with the order parameter s, we denote the entropy by a script letter.) 

The starting point for the calculation is the partition function Z = 2; of the system 
of N molecules at temperature T where ZM is the partition function of a single mol- 
ecule and only the rotational degrees of freedom are concerned. If the potential energy 
of a guest molecule produced by its surroundings, i.e. the host, is U ( a ,  b, y) with the 
Eulerian angles a, /? and y ,  and if its kinetic energy is neglected, the partition function is 

2, = exp ( - ” ” ) sin p da db dy, kT 
where the integrand is proportional to the orientational distribution function 
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978 H.-G. Kuball et al. 

Now we assume a uniaxial system with the symmetry axis in the x; direction and, 
furthermore, the following symmetry properties of its orientational distribution 
function f(P, y): 

As a consequence, the tensor gij33 is diagonal, so the designation f * is justified. 
Furthermore, the expansion of U(P, y) into spherical harmonics ym(P, y) up to I = 2 
contains, apart from an irrelevant additive constant, only two independent par- 
ameters and may be written as 

f * ( h  Y) = f*(P, Y + n> = f * ( P ,  - 7 )  = f * ( n  - P, Y). (14) 

We choose the values of a and b in such a way that U(P, y) has a minimum at P = 0 
(and thus also at P = n) for all values of y, i.e. a < 0 and Ibl < 3’’21al. 

The Helmholtz free energy per molecule 

F(T,  a, b) = -kTlnZ,(T, a, 6 )  (16) 
as a function of T and the ‘external variables’ a and b yields all desired thermodynamic 
quantities and relations. The entropy per molecule of the orientational distribution is 

Y = = Y ( ; , ; ) .  (17) 

The last form follows directly from equations (1 6) ,  (1 2 )  and (1 5) .  Analogously one 
obtains, according to their definition by equations (3) and (4), the order parameters 

s* = ( g)T,b = s* (TI a b  ?)’ 

D* = ( g)T,a = D* ( T ,  a b  7) .  

which appear here as internal variables of the system, as should be. Because F is 
homogeneous of the first degree in the variables a,  b and T, according to Euler’s 
theorem 

F = aS* + bD* - TY (19) 

E = F + T Y  = aS* + bD*. (20) 

dE = dF + T d Y  + Y d T  = S*da + D*db + T d 9 ,  (21) 

TdY  = ads* + bdD*. (22) 

Y = Y ( S * ,  D*), (23) 

holds, from which the energy per molecule of the system results in 

Equations (20), (18) and (17) yield 

and comparison with the differential of the right-hand side of equation (20) shows that 

Elimination of a/T and b/T from equations (17) and (18) gives 

which does not depend explicitly on the temperature and yields the desired isentropics 
Y ( S * ,  D*) = constant drawn in figure 6 .  According to equation (22) the slope of the 
isentropic ( d 9  = 0) at  a point with coordinates S*(a/T, b / T ) ,  D*(a/T, b / T )  is 

n - -  - - -  dD* 
dS* b 
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Order parameters from mixed polarized U. V. hands 979 

Figure 6. The isentropies Y ( S * ,  D*) = constant in the order triangle (relative entropy 
units from inside outwards: 1.000, 0.997, 0.992, 0.986, 0.975, 0.964, 0.937, 0.895, 
0,854 and 0.813). 

On the other hand, equations (1 8) yield, for fixed values of a and b, the variation of 
S* and D* with temperature which is shown by a curve in figure 7. Elimination of T 
would give the equation of this curve; for example, in the form 

D* = f (S*,  h/a). (25) 

It intersects all isentropics in points where the slope of the latter has the same 
value -a/b. By this property it can be constructed from the isentropics according 
to figure 7t .  

t In general, a and b are functions of temperature determined by the host system. In this 
case, for the last statement to hold, b/a has to be independent of temperature, which is to 
be expected from mean field theory [7] and proves to be true within the experimental errors 
in the cases considered here, as can be seen from the consistency of the evaluation of our 
experimcntal data. 
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980 H.-G. Kuball et af. 

Figure 7. Construction of the function D* = f(S*, b/a) from the isentropics. 

For the limiting cases of very high and very low temperatures equations (1 8) and (1 7) 
take on a simple form. The results are: 

(a) for very high temperatures 

z, = 8n2 ( 1  + =) 10(kT)2 

and thus 

9' = k[ln8n2 - $(S*2 + 11 ; 
(b) for very low temperatures 

z, = 8n2 kTexp(- k), 
(9a2 - 3b2)'I2 

whence 

(30) 

- S*)2 - 3D**] ( 3 1 )  

3a b s* = 1 +  kT, D* = - k T, 3a2 - b2 3a2 - b2 

In the first case the isentropics are circles with centres at S* = D* = 0 and the curves 
given by equation (25) are radii of these circles. In the second case the isentropics are 
hyperbolae with centres at S* = 1, D* = 0 and the faces D* = f 3-"2(1 - S*) of 
the orientation triangle as asymptotes. The curves corresponding to equation (25) are 
straight lines through the point ( 1 ,  0). 

3.6. Performance of the method 
The starting point is the degree of anisotropy R(V, T )  measured as a function of 

temperature for two wavenumbers V I  and V2 (figure 8), i.e. an experimental curve 
R(q2, T )  = @(R(Vl, 7')) is measured. This curve is fitted by calculating R(V, , T )  and 
R ( f 2 ,  T )  from equations ( 5 )  and (25) with varying parameters q&(V2) and bja. For the 
best fit of the experimental result the sum of the squares of the deviations of the 
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Figure 8. The R(ij2, T ) ,  R(S,, T)-dependence of dyes 1-7 in ZLI 1695 (Merck) as a host 
(temperature region from 28 to 68°C; for symbols, see table 4). 

experimental points from the theoretical curve is a minimum. The results are con- 
trolled by looking at the fitted curve with respect to the measured points, as shown 
for dyes 2 and 4 in figures 4 and 5. From the fitted curve R(i,, T )  = @(R(3,, T ) ) ,  
q&(i2) is taken in order to calculate S* and D* from equations (5) for various 
temperatures. From S*, D* and the measured degree of anisotropy, the reduced 
spectra, i.e. the tensor coordinates gflfl (B = 1, 2, 3), can be evaluated. For the whole 
method &(3) is assumed to be independent of temperature, i.e. solute-solvent 
interaction and variation of conformations have no influence in the temperature 
interval used. 

4. Results 
For the dyes given in table 3,  R(i ,  T )  has been measured in the host system 

ZLI 1695 (Merck) in the temperature region from 28 to 68°C. As can be seen in 
figure 8, the slopes of the curves equation (6) indicated by the measured points and 
the areas corresponding to figure 2 are very different for the different compounds. 
Figure 9 shows the calculated function D* = f(S*) for dyes 1-7. The results for 
qaa(i;,), b/a,  S* and D* for these compounds are summarized in table 4. Furthermore, 
for 6 as an example, the reduced spectra calculated with qT2 from table 4 are compared 
with the spectra calculated by the T.E.M. model and the approximation where 
q;, = 1 (figure 10). 

5. Discussion 
If a molecular system has two purely polarized transitions with orthogonal tran- 

sition moment directions, then the order parameters s* and D* can be calculated 
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O D  O L  0 1  O b  0 6  I o 

Y X  

Figure 9. The relation D* = f(S*) between the order parameters as a function of tem- 
perature (temperature region from 28 to  68°C; for symbols, see table 4). 

Table 3 .  Anthraquinone dyes. 
R ,  0 It, 

1 NH, H H H  H H H  NH2 

2 N H ~ C H ~  H H H  H H H  N H ~ C H ,  

3 NH, CH2- H H H H CH,- NH2 

4 NH, H H  H H +  NH2 

5 NH2 Br H H  H H B r  NH, 

6 NH, a H H  H H O  NH2 

7 NH, H a O H O  NH2 

directly because there is sufficient experimental information. This condition is not 
often fulfilled for U.V. spectra. If there are only bands of mixed polarization, deter- 
mination of S* and D* is possible only by a very rough approximation. For molecules 
with one purely polarized transition (V,) and a second spectral region (Vz) with 
overlapping bands, Saupe’s order parameters can be determined from the tempera- 
ture dependence of the degree of anisotropy R(V, T), measured in these two spectral 
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Figure 10. Reduced spectra of dye 6 calculated by different approximations. 

Table 4. Values for amount of mixing in the 5, region (@&)), the parameter b/a and the 
order parameters S* and D* for the diaminoanthraquinones 1-7. 

Dye Symbol Situation 

1 0 
2 7k 
3 A 
4 X 

5 + 
6 
7 0 

3b 
36  
36  
2b  
3b  
3b  
3b  

0.95 0.57 
0.84 0.78 
0.87 0.41 
0.52 1.22 
0.92 0.62 
0.72 0.24 
0.68 0.37 

S* D* 
(T  = 311K) 

0.634 0.07 
0.34, 0.14 
0.52, 0.07 
0.27, 0.21 
0.51, 0.10 
0.66, 0.02 
0.32, 0.06 
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regions, if the involved bands are polarized in the same plane. A function R(iz ,  T )  = 
@(R(i , ,  T ) )  can be derived which yields a straight line if D* = 0 or in the trivial case 
where all bands concerned are polarized parallel to each other. The latter case can be 
discerned easily by the inspection of R(i ,  T ) ,  since the degree of anisotropy is then 
the same in both spectral regions. For D* = 0, S* and the amount of overlap of the 
absorption bands in the region V, can be determined from the slope of the straight line. 
By this the transition moment direction with respect to the x: system, i.e. p in q&(i2), 
cannot be fixed. However, the number of possible /? values is restricted by the area in 
which the experimental points appear. For D* # 0 the position of the experimental 
points in different areas of the R(F,), R(Vz) plane also allows the assignment of the 
transition moment direction with respect to the orientation axis. By means of the 
curvature of the resulting curve, the assignment is unequivocal if the measured points 
spread over a large range. It seems that this cannot always be easily realized experi- 
mentally because the temperature dependence of R for liquid crystal guest-host 
systems, for example, is small, as is the temperature interval where the liquid crystal 
phase is stable. 

There are six possibilities of placing the principal axes xi* relative to the molecular 
framework portrayed here by the absorption behaviour, i.e. the transition moment 
tensor. Each area I-VIII in figure 2 can be assigned to some of the six spectroscopic 
situations given by the two transition moment directions with respect to the x,* axes. 
Two situations have been realized experimentally. The diaminoanthraquiones 1-3 
and 5-7 belong to the situation 3 b where the CT transition is polarized parallel to the 
orientation axis (x: axis) and the x: axis is parallel to the 0 = C + C= 0 direction. 
With dye 4 the orientation axis or the transition moment direction of the CT tran- 
sition is switched with respect to the molecular framework compared with dyes 1-3 
and 5-7. This means that the orientation axis or the CT transition moment is now 
parallel to the 0 = C . . . C = 0 direction. Because there is no reason for a change of 
the transition moment direction of the CT transition by the mesityl substituents in the 
2 and 7 positions, we have to conclude a switch of the orientation axis. With dye 7, 
a molecule analogous to 4 in which the mesityl groups are replaced by phenyl groups, 
the orientation axis is parallel to the CT transition moment. It is astonishing that this 
drastic change can be accomplished by the six methyl groups which distinguish 4 from 
7. There is no explanation for the exceptional behaviour of dye 4, but it seems to be 
really true that the methyl substitution is the essential point for this effect, because 
we found the same effect for non-symmetrically mesityl substituted diaminoanthra- 
quinones. This will be discussed in a subsequent paper. 

For the quantitative calculation of S* and D" the relation D* = f(S*) between 
the order parameters as a function of temperature is required. It has been derived here 
from the contribution .Y of the orientational order to the entropy of the ordered 
system. The isentropics Y ( S * ,  D*) = constant have been calculated from an orient- 
ing potential with two independent parameters a and h which appear as variables of 
state. The curve D* = f ( S * ,  b/a) intersects the isentropics in points of constant slope 
-a/h,  from which property it can easily be constructed. These curves are equal to 
those resulting from the mean field theory described by Luckhurst and co-workers [7]. 
Using this relation between D* and S* and the equations for the degree of anisotropy, 
the amount of overlap q,$(V,) as well as b/a can be determined. The reduced spectra, 
i.e. the spectra decomposed into components belonging to different transition 
moment directions, as calculated from &(i,), are in agreement, within the margins 
of error of the method, with those from the T.E.M. model. This agreement is a good 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
0
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Order parameters from mixed polarized U.  V. bands 985 

1 

7 
2 

5 

4 

3 

i 

I 
I " " I ' " ' I " '  b 

1 0  1 5  2 0  2 s  

( 3  

I 2  

- 

Figure 11. The order parameter S* and the entropy Y versus the length-to-width ratio 
13/Z2 of the molecule (T  = 38°C). For Y the numbers of the compounds are written in 
English gothic. 

justification for both methods, because they start from very different assumptions. 
Whereas T.E.M. assume certain spectroscopic features, with the method given here 
the use of our relation D* = f (S*)  is the essential point. Furthermore, the reduced 
spectra show that the neglect of a small overlap of bands leads to unacceptable results. 

A structure-order parameter relation is often used in literature where S* is given 
as a function of the length to width ratio &/I2 of the molecule. As can be seen from 
figure 11, such a relation does not hold for the diaminoanthraquinones analysed here. 
One may ask whether this deviation is an effect of the second order parameter D*. 
This is not true, however, as can be seen from the respective values of Y in figure I 1. 
The relation between order parameters and the structure of diaminoanthraquinones 
will be discussed again in a subsequent paper, in the context of the investigation of 
a large number of symmetrically and non-symmetrically substituted compounds. 
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